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Abstract— A methodology to analyze turbulent boundary layers over rough surfaces is developed. A new
formulation of the mixing length model, expressed in the velocity variable, is instrumental in the modeling
effort, and the surface roughness effect is embedded in an amplification factor as a multiplier to the mixing
length. It ranges from unity for a smooth surface and varies upward for rough surfaces, depending on the
type and magnitude of the roughness. The new method is demonstrated in the case of flow over a flat plate
with two surface roughnesses. With a length Reynolds number of 10 million, the local skin friction is
increased by as much as 60% when the ratio of roughness height to length is 1: 10000,

1. INTRODUCTION

THE INFLUENCE of surface roughness on fluid dynam-
ics and heat transfer is an accepted phenomenon, as
witnessed by the continuing stream of investigations
since the early work by Nikuradse [1], on the role of
surface roughness in turbulent boundary layers. Much
has been accomplished, resulting in more test data,
analyses and correlations—theory, basic mechanism
and physical components. While the state of under-
standing continues to improve, the current analytical
procedures are in some aspects still fragmented and
in want. With the advent of computational fluid
dynamics, there is a need for a unified methodology
to account for the effects of surface roughness. The
need is especially marked in aerospace applications
where high speed can greatly magnify even a moderate
surface roughness such as those encountered in re-
entry cooling technology and on gas turbine blades.
Motivated by the last-mentioned application, this
work was undertaken as a step toward a more con-
sistent approach by providing a model of analyzing
the turbulent boundary layers on rough surfaces. The
model is based on Prandtl’s mixing length, modified
so as to admit a roughness-dependent amplification
factor, resulting in an analytical structure different
from that of the Prandtl-van Driest family. It is this
amplification factor in which trends of the exper-
imental data are reflected in a plausible way. The
model formulated is shown to satisfactorily mimic the
experimental features in the velocity distributions in
the rough-wall boundary layers and in the pipe flow
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1 The term, velocity shift, or Au*, shall mean the down-
ward shift of »* for a rough surface from that for a smooth
surface in the region where the wall-law is valid.

data of Nikuradse [1} and Moody [2]. So far the model
is restricted to the fluid dynamic aspects, its extension
to the thermal behavior is under way and will be
reported separately.

2. THE MIXING LENGTH AND SURFACE
ROUGHNESS

2.1. A brief re-visit with Prandtl’s analysis

Nikuradse’s rough-pipe data and those of others
have established that in the wall-law region, an exper-
imentally determined velocity distribution when non-
dimensionalized by the plus-coordinates, u* and y™*,
shows a definite, parallel downward shift] from the
wall-law for a smooth surface. The slope is
unchanged. Thus, between the two boundary layers—
rough and smooth walls—there is a similarity and a
difference. For clarity of discussion, a few essentials
of the early developments are re-cited. We begin with
the empirical wall-law for a smooth surface

I
ut = E‘Oge.v* +C=A,logy™+C (1)

in which the constants K and C are approximately 0.4
and 5.5, respectively. This empirical law led Prandti
to his hypothesis of a mixing length /, which, in turn,
gives rise to a turbulent viscosity and the turbulent
shear stress. These developments are summarized by
the following equations :

T = w(3u/dy), ©=pl*(@ujdy), |=Ky.
(2a-¢)

The ability of Prandtl’s mixing length model in
recovering the wall-law is an essential attraction for
its wide acceptance in the fluids engineering
community. Its adoption became more widespread
when van Driest [3] postulated a damping factor
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NOMENCLATURE
A, wall-law constant, equation (1) u, cross-section averaged velocity of «
A, van Drigst’s damping constant (= 26), u, friction velocity, \/(t/p)
equation (3) u* dimensionless velocity, u/u,
B Nikuradse intercept function, equation Au*  magnitude of asymptotic downshift of "
(18) U freestream velocity
C wall-law intercept for smooth walls, X distance along a flat plate
equation (1) v distance from wall

C, local surface friction coeflicient, t/pU*

D van Driest damping factor, equation (3)

E wall-law constant, exponential form,
equation (5b)

! Darcy’s pipe friction factor, 8(u,/u,)”

k wall roughness height

k~ roughness Reynolds number, ku, /v

K wall-law (von Karman) constant (0.40,
0411

/ mixing length

I~ dimensionless mixing length, /v

Fo pipe radius

re non-dimensional pipe radius, ryu, /v

R amplification factor

Re pipe flow Reynolds number, 2u r/v

Re,  distance Reynolds number, xU/v

u time-averaged turbulent velocity parallel
to a wall

+

v dimensionless normal distance, yu,/v.

Greek symbols
et turbulent viscosity/molecular viscosity,

JZ8yL
i molecular viscosity
I turbulent viscosity
v kinematic viscosity of fluid
P fluid density
T wall shear stress.
Subscripts
a average
t frictional ; turbulent
w wall.

which modifies Prandtl’s mixing length, equation (2c),
by his wall correction formula

D=1-cxp(—1r*id,). 3)
For the damping constant A,, he recommended a
value of 26. As is well known, the model consisting of
cquations (2¢) and (3) has led to a good accounting
of the entire profile, unifying the sublayer, the buffer
zone, and the fully turbulent region. Such a procedure
is now well established for flows over smooth surfaces.
For rough surfaces, however, the situation is not as
clear.

2.2. Recent modifications for rough surfaces

Since surface roughness promotes mixing in the
flow, a simple and, perhaps, elementary modification
is to postulate that the mixing length be increased by
a factor R. Trying a new formulation

[ = RKy 4)
would satisfy the conceptual requirement as noted.
However, its use results in a wall-law with a slope of
1/(RK). not 1/K as confirmed by the overwhelming
experimental evidence, thus leading to a confict.
Apparently aware of this, van Driest [3] sought to
adjust his constant A, so that it decreases as the sur-
face roughness increases in size. By matching with
the velocity shifts measured on surfaces with known
roughnesses, he established a relation of his damping
constant with k™ in which it successively decreases

from 26 for k™ =0 to a value of zero for k* = 55.
Beyond this, van Driest’s modification is not, as he
stated, capable of describing the rough-wall velocity
distributions.

Along the same direction, McDonald and Fish [4]
let van Driest’s damping factor D exceed the value of
1 when k™ > 55. They did this by an additive term to
the right-hand side of equation (2¢) and showed that
such a modification is only usable up to k¥ = 10000.
Similarly, Heazler er al. [5] allowed the damping con-
stant A, to remain at zero for k™ > 55, but increased
the mixing length by an amount A/* which depends
on the overage (k™ —55).

Differing from the preceding steps, Rotta (6] pro-
posed a coordinate shift. His procedure is shown by
Cebeci and Smith [7] as identical to replacing y* by
(¥*+Ay*)in equation (2c), where Ay™ is a pre-fixed
coordinate shift. Conceptually speaking, Rotta’s idea
recognized that at the tips of the surface protrusions,
the plus-velocity represents a cumulative effect eman-
ating from the recesses of the roughness elements.
More recently, Granville [8] has combined the
approaches of van Driest and of Rotta, resulting in a
formulation that can be used for arbitrary values of
k*—from the smooth through the transitionally
rough and to the fully rough regime.

In the modifications enumerated so far, there is
however a common inadequacy: that the required
condition of du™/dy* = 1 at the wall y* = 0 is not
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always satisfied, for the mixing length there is no
longer zero but finite. In finite-difference calculations,
this inconsistency may prove crucial.

2.3. A new formulation for smooth surfaces
Since equation (1) for the wall-law can be written
as

y* =exp(Ku")/E, E=exp(KC) (5a,b)

Prandt!’s non-dimensional mixing length [* = (lufv)
can be cast, by virtue of equation (5a), as

I+ = (K/E) exp (Ku™). (6)

Its use in lieu of Ky* would lead to the law of the wall,
but with an undefined integration constant which can
only be fixed by integrating from the wall position,
y* =0, where it is required that / vanish. This is done
by modifying equation (6) to one of the following
forms, while preserving the asymptotic behavior at
large p* orut:

It = (K/E)[exp(Ku")y—exp(—Ku*)] (7a)

I* = (K/E)[exp (Ku* ) —[1 + (Ku™) + (Ku")?/2]]
(70)

It is noted that at this stage of the development, the
left-hand sides of equations {7a) and (7b) can just as
well be replaced by &, the turbulent viscosity ratio.
(In fact, Spalding [9] had earlier shown a single vel-
ocity expression from which he deduced a turbulent
viscosity of the type of equation (7b).)

To summarize, there are four proposed models, all
quite similar in their general outline and all capable
of recovering the wall-law

et = (w/1) = (K/E)exp (Ku*)—[1 +(Ku™)

+(Ku*)’/21] (82)
I = (hu/v) = (K/E)exp (Ku*)—[1 + (Ku*)

+(Ku*)2] (8b)
et = (K/E)exp (Ku™) —exp (— Ku™*)] (8¢c)
I* = (K/E)[exp (Ku™) —exp (— Ku™)]. (8d)

It is from these formulations that a further delineation
shall be made as to which is to be recommended:
using 0.4 for K and 8.134 for E {these values yield
C = 5.24, van Driest’s intercept), four curves of u™ vs
»*. in addition to van Driest’s curve are obtained and
shown in Fig. 1. Among the results from the various
models, noticeable differences occur only in the buffer
region between those of models represented by equa-
tions (8b) and (8¢). It may be noted in passing that the
models of equations (8a) and (8c) give the following
closed forms:

y* = u + [exp (Kut) —[1+(Ku*)*/2
+(Ku*)I6I]/E (9)
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y* = u* +(2/E)[cos h(Ku*) ~1]. (10)

It appears that for smooth walls, formulations by
equations (8a) and (8d} are preferable to the other
two, though all four models reproduce the wall-law
at large values of u*,

2.4. Extension to rough surface

All of the four forms of equations (8) have one
feature in common : at large values of #™, their right-
hand sides become

et or [T ={K/E)exp(Ku™) (an

from which the wall-law is recovered. It is significant
to note that the wall-law slope is dictated by K inside
the exponential term of equations (8) and that it is
unaffected by the proportionate constant (K/E). It is
the latter that provides an extra degree of freedom
that can be used to account for the roughness influence
in raising the mixing length or turbulent viscosity.

Accordingly, the right-hand sides of equations (8)
are multiplied by an amplification factor R the mag-
nitude of which depends on the roughness Reynolds
number, k7. To illustrate this method of analysis,
equation (8¢} is selected for the process: first, the
rough-surface turbulent viscosity is, from equation
(8c), represented by

&% = R(K/Eexp (Ku*) —exp (—Ku™)]  (12)

and the resulting velocity profile is a simple, closed
expression

y* =u* +QR/E)cos h(Ku*)—1].  (13)

At large values of u*, equation (13) is reduced to

ut = [log.y* +log. E—~log. R}/K (14)

which has a slope of 1/K, the same as for smooth
surfaces, and a last term denoting the downward shift
of u* in the wall region. The shift and the ampli-
fication factor R are therefore related by

Aut = (1/K)log, R. (15)

The preceding result, though derived from using the
model of equation (8c) is common to the other models
as well. Tt is this inherent feature in all four models of
equations (8) that distinguishes the present analysis
from the other models discussed previously.

2.5, Preferred model formulations

The next step is to establish from the four models
of equations (8) a clearer choice by examining how
well the numerical results based on these models com-
pared with the available experimental data over a
rough surface. For this purpose, however, the only
data were found in Robertson ez al.’s work [10]. They
measured the velocity downshift Au* from y* = 10
to the fully developed region for different surface
roughnesses. The measured values of Au*™ were in
reference to the smooth surface wall-law of equation
(1) with 4, = C = 5.6. Using the downshift measured
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................ VAN DRIEST

(i) —= &+ = (KE) (KU ~ [14(Ku*)+iu*)2/2]}
iy = 9+ = (IE) {eKu™ —[14(Ku*)+(Ku*)2r2)}
15} (i) — £+ = (K/E) [eKu“*_e-Ku*]
{iv) == Q+= (KE) [e Ku*- g-Ku*)

F16. 1. Comparative velocity profiles from models (K = 0.4, £ = 8,134, C = 5.24).

in the wall-law region to calculate an amplification
factor R from equation (15), analytical velocity dis-
tributions were obtained by direct numerical inte-
gration, starting from the wall position, with the tur-
bulent viscosity or mixing length models of equation
{8). Therefore, for each model, a set of calculated
velocity curves could be obtained to compare with
Robertson et al.’s data in the range of y* from 10 to
200. Of the four sets, those using equations (8¢) and
(8d) are indistinguishable from each other and are in
far better agreement with the data than the other two
models. This favorable correlation is testified by Fig.
2 and led to the adoption of equation (8d) for an
exponential mixing length as the candidate model of
this analysis. There is no particular reason for fav-
oring equation (8d), except that mixing length is more
in use than turbulent viscosity as the modeled par-
ameter.

3. THE ROUGHNESS AMPLIFICATION
FACTOR

What is required next is a quantitative relation con-
necting the amplification factor R and the roughness
number k*. For a particular roughness pattern, it can
only come from empirical data. An extensive survey
of the literature indicated that there are only a few
types for which the measured data can be used to
extract the amplification factors. There are four data
sources: Nikuradse’s sandgrain, Moody’s random
roughnesses [2]. Colebrook-~White’s mixed-sand sur-
face [11], and Hama’s wirescreen data [12]. These
four sources cover two distinct classes: (i) uniform
roughnesses—Nikuradse and Hama, (ii) random
roughnesses— Colebrook—White and Moody. Of the
flour. Nikuradse’s data are more comprehensive than
the others.

3.1. Nikuradse’s treatment of his roughness data
3.1.1. The B-function. Starting with a smooth pipe,
he first integrated equation (1) to obtain a relation

between the average and the friction velocities, and,
with minor adjustments, arrived at a pipe friction
formula which agreed well with the experimental data.
For flows in rough pipes, Nikuradse followed a similar
procedure and obtained a pipe friction correlation but
with an undetermined intercept constant C. Its value
was fixed by comparing with his measured friction
coefficient for a known surface roughness. This pro-
cedure led to a relationship between the velocity
downshift Au*—through the intercept constant C—
and the surface roughness. Reynolds number—
through the pipe roughness and friction. Nikuradse
chose to organize his data by means of his B-function
which is defined through the expression

ut = (log. v* —log k*)/K+B. (16)

An explicit connection between the B-function and
the intercept constant Cin equation (1) can be readily
obtained. Thus if C is set to 5.5 for a smooth surface,
then B must assume the following limiting form as k™*
approaches zero:

B=55+575log k™. a7

At the extreme of large values of k*, experimental
data established that B approaches a constant of 8.48.
Hence Nikuradse’s definition led to the interpretation
that the downward velocity shift in the wall-law region
is the B-function value of equation (17) for a smooth
surface minus the B-value in equation (16) that
describes the wall-law over a rough surface. Hence,
for large k*

ut = (5.5+5.75log,, k*)—8.48

=251log. k" —298. (18)

When the roughness number is large, say &¥ > 100,
for sandgrain roughness, B can be safely put to 8.48,
then equation (18) coupled with equation (15) yields
an asymptotic, lingar relation between the mixing
length amplification R and k™.

3.1.2. Nikuradse's B-function re-analyzed. While his
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FIG. 2. Comparison of Robertson et al.’s data with calculated profiles.

experimental pipe friction data and his method of
presentation remain undisputed, it is generally
believed that there is room for improvement in his
assumption of the wall-law for the pipe cross-section.
Hence, starting from a more logical step we use the
following equation to generate the established velocity
profile:

[1+()*(du* /dy™))(dut /dy™)

=[-=07 /] (19
where r{ is the dimensionless pipe radius in the plus
coordinates, and y* is the distance from the pipe wall.
In the equation, the mixing length is obtained from
equation (8d).

The first step was to verify that the use of these two
equations, equations (8d) and (19), would lead to the
smooth pipe friction correlation. This was done by
taking 0.4 for K, 9.025 for E, and by setting R to 1.
The agreement was rather poor. Even with the widely
accepted Prandtl-van Driest formula for the mixing
length, the calculated friction factor vs Reynolds num-
ber relation shows an appreciable deviation from the
established correlation. However, by introducing a
van Driest damping factor of equation (3) into equa-
tion (8d), the result was a remarkable improvement.
With this modification, rough pipe flows were
analyzed essentially by cut and trial by varying R until

the calculated friction values were in acceptable agree-
ment with the data over a reasonable Reynolds num-
ber range. In fact, the process of determining the
mixing length amplification R was also carried out
for Moody’s random roughnesses, characteristic of
commercial pipes. With the amplification R thus
determined, an asymptotic velocity downshift Au™
can be calculated from equation (15). And from Au™,
a corresponding B-function was obtained. Results of
the preceding steps are shown in the figures as follows :
in Figs. 3(a) and (b) are the familiar pipe friction
diagrams for Nikuradse’s sandgrain roughnesses and
for Moody’s commercial pipes with random rough-
nesses. In both figures, the calculated values in the
present work are the symbols. For each roughness-
to-radius ratio, good agreement with the established
correlations (curves) can be seen. The mixing length
amplification factors for these two types of rough-
nesses along with those for Colebrook—White’s mixed
sand and Hama’s wirescreens are given in Fig. 4. Of
interest to observe is that the curves of R vs k* for
Nikuradse’s sandgrain and Hama'’s wirescreens show
alow plateau value at k* < 4 and that they both have
a transition region between 4 and 40 and become
linear in k* afterwards, as discussed before. In con-
trast to these two patterns of uniform roughnesses, the
curves for random roughnesses exhibit a continuous
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FiG. 3(a). Calculated pipe friction factors for Nikuradse's sandgrain roughnesses.
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FiG. 3(b). Calculated pipe friction factor for Moody’s commercial random roughnesses.

variation without the zonal features for the other type.
Finally, the re-evaluated B-function and Nikuradse’s
values are compared in Fig. 5. It is worth noting that
although the difference between them is not large, the
calculated friction results from the two sources turned
out to be quite significant. Corresponding to Moody’s
random roughness friction data, the B-function is also
presented in Fig. 5.

The computed amplification factors for various
values of k* are tabulated in Table 1 for Nikuradse’s
sandgrain and Moody’s random roughnesses. At large
values of k%, linear relations of the following types
can be used with confidence :

4. THE VELOCITY FROM THE WALL TO THE
LAW OF THE WALL

With the R—k* relations established at least for the
commonly encountered roughnesses, it becomes of
interest to show that the present methodology can
indeed produce the velocity profiles from the wall to
where the wall-law is valid. (It should be noted that
the question of where y™ is referenced is not taken up
in the present work. A commonly accepted reference
point is about 70% of the height below the protrusion
tips.) Values for y* were chosen between 0 and 400,
and the two turbulence models given by equations (8¢)
and (8d) were used. As an illustration, Colebrook -

; . _ + +

Nikuradse: R=03036k", &7 >100 White’s data were used in the R—k™ relation. The

Hama: R =0.586k", k* > 30 numerical constants K and E were set at 0.4 and 9.025,
) B . e with the latter corresponding to an intercept value of

Moody: R'=0.2930k. K~ > 600 5.5, first used by Nikuradse. Computed curves in Fig.

Colebrook-White: R=0.327k*, k% > 40. 6 show features consistent with experimental data: at
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F16. 4. Mixing length amplification vs surface roughness.
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FiG. 5. Distributions of velocity-shift function B vs roughness Reynolds number.

y* > 100, all curves for different roughnesses have the
same slope of 1/K; and at p* =0, du™/dyT =1 is
satisfied by ali curves. In addition, the laminar
sublayer thickness is seen to decrease as k™ increases,
i.e. the surface becomes rougher.

5. FLOW OVER A ROUGH FLAT PLATE

it is well known that the basic Prandtl-van Driest
model for the mixing length works well for flows with
mild pressure gradients. Since its emergence, there
have been quite a number of modifications to extend
its applications to include compressibility, surface
transpiration, adverse pressure gradient and other fac-
tors. With the exponential model developed in this
analysis for rough surfaces, the first expectation is of
course that it should work well for simple flows with
surface roughness. Hence as a first demonstration,

calculations were carried out for a flat plate with
Nikuradse’s sandgrain roughness, for which the
amplification factors are taken from Table 1. Starting
with turbulent flow at the leading edge and with the
roughness defined by (kU/v) of 0, 500, and 1000,
boundary layer developments were tracked until the
local Reynolds numbers were well into the ‘esta-
blished” range. The numerical constants were
K =041 and E = 7.768 {C = 5). The eddy viscosity
from equation (8d) was not to exceed Clauser’s limit
of 0.0168 times the displacement Reynolds number.
Using a simple marching code, results of the local
friction are shown in Fig. 7. As a first check, the
computed friction was found to correlate well with
the accepted equation for flows over a smooth surface.
For the other two surface conditions, it should be
observed that the increase in friction in the leading
edge region with low local Reynolds numbers was
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Table I. Mixing length amplification for
sandgrain (Nikuradse) and commercial ran-
dom (Moody) roughnesses

Moody’s

Nikuradse's commercial
i sandgrain random
0.0 | 1
2.0 1.0288 1.5173
4.0 1.1278 2.2534
8.0 1.6059 3.6637
10.0 2.0003 4.3767
12.0 2.4778 5.0748
16.0 3.5597 6.4233
20.0 4.7771 7.7445
25.0 6.4263 9.3921
30.0 8.1745 11.0470
40.0 11.7392 14.3558
0.0 15.0897 17.6186
60.0 18.2128 20.8224
80.0 24.2704 27.1310
100.0 30.36007 33.3253
120.0 — 39.4392
160.0 — 51.5278
200.0 — 63.4309
400.0 — 121.4452
600.0 — 177.0%
TR becomes linear afterwards:
R = 0.3036k* (Nikuradse); R = 0.295"
(Moody).

much more pronounced than that in the downstream
region with high Reynolds numbers. This is due, of
course, to the fact that the roughness effect exerts itself
through a roughness Reynolds number, £*, in which
the local friction velocity plays an equally influential
role, as does the physical size of a protrusion. Thus, in
the downstream region, roughness influence becomes
diluted as surface friction is reduced.

To show some finer details, calculated velocity pro-

L. 8. Han

files at a streamwise location of Re, = 107 are given
in Fig. 8 for the three surfaces. Overall, the velocities
in the rough-wall boundary layers are, as expected,
lower than in a smooth-surface layer. In the immediate
vicinity of a surface, however, the reverse happens,
as it should. These relative velocity distributions are
clearly discernible in Fig. 8.

6. CONCLUDING REMARKS

A distinguishing feature of the present model for
the mixing length is its strong dependence on the
local velocity in the boundary layer, in contrast to the
original formulation in terms of a local distance from
the wall. A second feature following the first is the
model’s ability to incorporate, through a free
constant, the surface roughness effect by virtue of an
amplification factor. Numerically, the model behaves
well and mimics quite faithfully the experimental fea-
tures of the flow over rough surfaces. On the other
hand, it is difficult to conclude whether the expon-
ential form is more, or less conceptually acceptable
than Prandtl’s model since both are based on the
empiricism of the wall law. From a calculational view-
point, the exponential model eliminates the need for
separate descriptions of the mixing length according
to the range of the roughness Reynolds number.

The present model requires, as does any other
model, that for each surface roughness pattern the
relation between R and k% be known. Within the
scope of this work, exhaustive compilation of the
empirical R—& " relations is neither intended nor pos-
sible, for the simple fact that although there were a
large number of rough surfaces tested, available infor-
mation was not sufficient to be processed into a form
suitable for the present model effort. Further research
should include effort to explore how the model can be
extended to include the effects of pressurc gradient

25
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Fic. 6. Wall-region velocities for rough surfaces (Colebrook—White}.
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15 | RexCi= 0.324[1 - 8.125+/Cy + 22.08 Ct ] exp (0.58/Ct)
REF [7]
10 CALCULATED POINTS
s A KUy = 1000
O KUfv =500
6 O KU =0 (SMOOTH)
2
x
54
2 Oy =0.0592/Re 32
REF [7]
1 ]
105 106 107 108 109
Re,

FiG. 7. Calculated local friction coefficients of flat plates, Nikuradse’s sandgrain roughness, K = 0.4,
E=17.768.
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|

yUhy

2

G104

F1G. 8. Calculated rough-surface boundary layer velocity profiles at Re, = 107, K = 0.41, E = 7.768.

and surface transpiration. Of course, extension to heat
transfer with a thermal mixing length appears to be a
natural sequel. The latter has been pursued and will
be reported later.
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UN MODELE DE LONGUEUR DE MELANGE POUR LES COUCHES LIMITES
TURBULENTES SUR DES SURFACES RUGUEUSES

Résumé—On développe une méthodologie pour analyser les couches limites turbulentes sur des surfaces
rugueuses. Une nouvelle formulation du modéle de longueur de mélange exprimeée en variable de vitesse
est choisie et Peffet de la rugosité de surface est représenté par un facteur d’amplitude qui multiplie la
longueur de mélange. Il est égal & P'unité pour une surface lisse et il est plus grand pour des surfaces
rugueuses selon le type et Vamplitude des rugosités. La nouvelle méthode est essayée dans le cas d’un
écoulement sur une plaque plane avec deux rugosités de surface. Avec un nombre de Reynolds de 10
millions, le frottement local pariétal est augmenté de 60% quand le rapport hauteur sur longueur de la
rugosité est 1:10000.

EIN MISCHUNGSWEGMODELL FUR TURBULENTE GRENZSCHICHTEN AN
RAUHEN OBERFLACHEN

Zusammenfassung—Ein Verfahren zur Untersuchung turbulenter Grenzschichten an rauhen Oberflichen
wird entwickelt. Eine Neuformulierung des Mischungswegmodells—ausgedriickt in der Geschwindigkeits-
variablen—ist grundlegend fiir die Erstellung des Modells. Der EinfluB der Oberflichenrauhigkeit ist
in einem Verstiarkungsfaktor als Multiplikator des Mischungswegs enthalten. Er steigt vom Wert 1 fiir
eine glatte Oberfliiche zu groBeren Werten bei rauhen Oberflichen an, abhdngig von Art und Grdfe der
Rauhigkeit. Die neue Methode wird fiir den Fall einer Strémung iiber eine ebene Platte mit zwei
unterschiedlichen Oberflichenrauhigkeiten dargestellt. Bei der lingenbezogenen Reynolds-Zahl 107 wird
der ortliche Reibungsbeiwert fiir das Verhiltnis Rauhigkeitshéhe zu -linge 1:10000 um mehr als
60% erhoht.

MOJEJb AJIMHbI CMEHIEHWUA U1A TYPBVJIEHTHbBIX NMOIPAHHMYHBIX CIOEB HAJ
IMEPOXOBATBIMH NMOBEPXHOCTAMHA

Anporamms—Pa3pabaTbiBaeTCs METONOIOTHS aHaMN3a TypOYNEHTHBIX NOrPAHHYHBIX CJIOCB HAX HUEpo-
XOBATHIMH TIOBEPXHOXTAMY. [IpH MOJEARPOBAHHN HCTIONB3OBAHA HOBAA GOPMYJIHPOBKA MOZENH JUTHHEB
CMEHISHHS, COAEPXaIlas CKoPOCTh, 4 HPPeKT HIepoX0oBaTOCTH NOBEPXHOCTH BKIIIOYECH B MHOXKHTEIL NIPH
JutaHe cvemeHns. OB YReHYHBACTCH OT SAMHMLM (U1 T71aJKMX NOBEPXHOCTEH) ¥ 3aBHCHT OT BHMAA H
BeuMHbE IEpOXoBaTOCTH. [IpHMEHEHHE HOBOTO METOJa HIMIOTPHPYETCH Ha mpmmepe obTekams
TUIOCKO# ILFACTHHBL € IBYMS PAIHYHLIMU IEPOXOBATOCTAMA noBepxHocTH. Koraa uncno Peitnonbaca,
OCHOBaHHOE HA [UTHHE, cocTapseT 10 MMUIMOHOB, JIOKAJILHBIA KOIPPHUHEHT TPEHHS yBEIHYHBACTCA Ha
60% NpH OTHOLUEHWH BHICOTHI LIEPOXOBATOCTH K JUIHHE, PABHOM | :10000.



