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Abstract-A methodology to analyze turbulent boundary layers over rough surfaces is developed. A new 
formulation of the mixing length model, expressed in the velocity variable, is instrumental in the modeling 
effort, and the surface roughness effect is embedded in an amplification factor as a multiplier to the mixing 
length. It ranges from unity for a smooth surface and varies upward for rough surfaces, depending on the 
type and magnitude of the roughness. The new method is demonstrated in the case of flow over a fiat plate 
with two surface roughnesses. With a length Reynolds number of 10 million, the local skin friction is 

increased by as much as 60% when the ratio of roughness height to length is 1 : 10 000. 

1. INTRODUCTION 

THE INFLUENCE of surface roughness on fluid dynam- 
ics and heat transfer is an accepted phenomenon, as 
witnessed by the continuing stream of investigations 
since the early work by Nikuradse [l], on the role of 
surface roughness in turbulent boundary layers. Much 
has been accomplished, resulting in more test data, 
analyses and correlations- theory, basic mechanism 
and physical components. While the state of under- 
standing continues to improve, the current analytical 
procedures are in some aspects still fragmented and 
in want. With the advent of computational fluid 
dynamics, there is a need for a unified methodology 
to account for the effects of surface roughness. The 
need is especially marked in aerospace applications 
where high speed can greatly magnify even a moderate 
surface roughness such as those encountered in re- 
entry cooling technology and on gas turbine blades. 

Motivated by the last-mentioned application, this 
work was undertaken as a step toward a more con- 
sistent approach by providing a mode1 of analyzing 
the turbulent boundary layers on rough surfaces. The 
model is based on Prandtl’s mixing length, modified 
so as to admit a roughness-dependent amplification 
factor, resulting in an analytical structure different 
from that of the Prandtl-van Driest family. It is this 
ampli~cation factor in which trends of the exper- 
imental data are reflected in a plausible way. The 
mode1 formulated is shown to satisfactorily mimic the 
experimental features in the velocity distributions in 
the rough-wall boundary layers and in the pipe flow 
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$The term, velocity shift, or Au+, shall mean the down- 

ward shift of u+ for a rough surface from that for a smooth 
surface in the region where the wall-law is valid. 

data of Nikuradse [I] and Moody [2]. So far the model 
is restricted to the fluid dynamic aspects, its extension 
to the thermal behavior is under way and wiII be 
reported separately. 

2. THE MIXING LENGTH AND SURFACE 

ROUGHNESS 

2.1. A brief re-oisir with Prandtl’s analysis 
Nikuradse’s rough-pipe data and those of others 

have established that in the wall-law region, an exper- 
imentally determined velocity distribution when non- 
dimensionalized by the plus-coordinates, u+ and I’+, 
shows a definite. parallel downward shifti from the 
wall-law for a smooth surface. The slope is 
unchanged. Thus, between the two boundary layers- 
rough and smooth walls-there is a similarity and a 
difference. For clarity of discussion, a few essentials 
of the early developments are re-cited. We begin with 
the empirical wall-law for a smooth surface 

U’ =;lo&.)~++C= A,log,,y’+C (1) 

in which the constants K and Care approximately 0.4 
and 5.5, respectively. This empirical law led Prandtl 
to his hypothesis of a mixing length 1, which, in turn, 
gives rise to a turbulent viscosity and the turbulent 
shear stress. These developments are summarized by 
the following equations : 

Pa-c) 

The ability of Prandtl’s mixing length model in 
recovering the wall-law is an essential attraction for 
its wide acceptance in the fluids engineering 
community. Its adoption became more widespread 
when van Driest [3] postulated a damping factor 
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B 

C‘, 
D 

E 

k’ 
K 

NOMENCLATURE 

wall-law constant, equation (I) 
van Driest’s damping constant (= 26). 

equation (3) 
Nikuradse intercept function, equation 

(18) 
wall-law intercept for smooth walls, 

equation (1) 
local surface friction coefficient. t!Ai~Ci~ 

van Driest damping factor, equation (3) 
wall-law constant, exponential form. 

equation (5b) 
Darcy’s pipe friction factor, X(U,/LI,,)’ 
wall roughness height 
roughness Reynolds number, ku,:‘\ 

wall-law (von Karman) constant (0.40, 

0.41 I) 
mixing length 
dimensionless mixing length. lu,iv 
pipe radius 

4, cross-section averaged velocity of II 

u, friction velocity, Q(t/l~) 

u+ dimensionless velocity, u/u, 

Au+ magnitude of asymptotic downshift of/t+ 
(’ freestream velocity 

.\- distance along a flat plate 

j’ distance from wall 

_l’f dimensionless normal distance, _ru,:~. 

Greek 

P 

symbols 
turbulent viscosity/molecular viscosity, 

!lt,‘/i 
molecular viscosity 

turbulent viscosity 
kinematic viscosity of fluid 
fluid density 
wall shear stress. 

non-dimensional pipe radius, r,u,/v 
amplification factor 
pipe flow Reynolds number, 2u,r,,;\~ Subscripts 

distance Reynolds number, XI//V a average 

time-averaged turbulent velocity parallel t frictional : turbulent 

to a wall W wall. 

which modifies Prandtl’s mixing length, equation (2c), 
by his wall correction formula 

D = 1 -cxp (-v+‘A,). (3) 

For the damping constant A,, he recommended a 
value of 26. As is well known, the model consisting of 
equations (2~) and (3) has led to a good accounting 
of the entire profile. unifying the sublayer, the buffer 
zone, and the fully turbulent region. Such a procedure 
is now well established for flows over smooth surfaces. 
For rough surfaces. however, the situation is not as 

clear. 

Since surface. roughness promotes mixing in the 
flow, a simple and, perhaps, elementary modification 
is to postulate that the mixing length be increased by 
a factor R. Trying a new formulation 

I= RKj (41 

would satisfy the conceptual requirement as noted. 
However, its use results in a wall-law with a slope of 
l/(RK). not l/K as confirmed by the overwhelming 
experimental evidence. thus leading to a confict. 
Apparently aware of this, van Driest [3] sought to 
adjust his constant A, so that it decreases as the sur- 
face roughness increases in size. By matching with 
the velocity shifts measured on surfaces with known 
roughnesses, he established a relation of his damping 
constant with k+ in which it successively decreases 

from 26 for k+ = 0 to a value of zero for k+ = 55. 

Beyond this, van Driest’s modification is not, as he 
stated, capable of describing the rough-wall velocity 

distributions. 
Along the same direction. McDonald and Fish [4] 

let van Driest’s damping factor D exceed the value of 
1 when k+ > 55. They did this by an additive term to 
the right-hand side of equation (2~) and showed that 
such a modification is only usable up to k+ = IO 000. 
Similarly, Heazler er ul. [5] allowed the damping con- 

stant A, to remain at zero fork+ > 55, but increased 
the mixing length by an amount AI+ which depends 
on the overage (k’ - 55). 

Differing from the preceding steps, Rotta [6] pro- 
posed a coordinate shift. His procedure is shown by 

Cebeci and Smith [7] as identical to replacing j‘+ by 
(_I,’ +A_r+) in equation (2~). where A!+ is a pre-fixed 
coordinate shift. Conceptually speaking, Rotta’s idea 
recognized that at the tips of the surface protrusions, 
the plus-velocity represents a cumulative effect eman- 
ating from the recesses of the roughness elements. 
More recently, Granville [8] has combined the 
approaches of van Driest and of Rotta, resulting in a 
formulation that can be used for arbitrary values of 
k + ---from the smooth through the transitionally 
rough and to the fully rough regime. 

In the modifications enumerated so far, there is 
however a common inadequacy: that the required 
condition of dLl+id,ta+ = I at the wall J+ = 0 is not 
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always satisfied, for the mixing length there is no 
longer zero but finite. In finite-difference calculations, 
this inconsistency may prove crucial. 

2.3. A ner2: .~rmuIfftion jbr srnaat~ surfuces 
Since equation (I) for the wall-law can be written 

as 

J y+ = exp (Ku+)/& E = exp (KC) (5a, b) 

Prandtl’s non-dimensional mixing length 6’ = (2u,!r) 
can be cast, by virtue of equation (5a), as 

1+ = (K/E)exp(Ku+). (6) 

Its use in lieu of KJ~+ would lead to the law of the wall, 
but with an undefined integration constant which can 
only be fixed by integrating from the wall position, 

.Y + = 0, where it is required that f vanish. This is done 
by modifying equation (6) to one of the following 
forms, while preserving the asymptotic behavior at 
large JI+ or u+ : 

I+ = (K/E)[exp(Ku+)-exp(-Ku+)] (7a) 

I+ = ~~~~)~exp~~~+)-[l~(~~+)+(~~+)2~2]] 

(7b) 

It is noted that at this stage of the development, the 
left-hand sides of equations (7a) and (7b) can just as 
well be replaced by E”. the turbulent viscosity ratio. 
(In fact, Spalding [9] had earlier shown a single vel- 
ocity expression from which he deduced a turbulent 
viscosity of the type of equation (7b).) 

To summarize, there are four proposed models, all 
quite similar in their general outline and all capable 
of recovering the wall-law 

c” = (~~~~) = (K/E)[exp(&+)-fl+(Kil+) 

+ (Ku+) l/2]] (ga) 

I* = (lu,/v) = (K/E)[exp(Ku+)-[l+(Ku+) 

+ (Ku+)2/2]] (8b) 

E+ = (K/E)/E)fexp (Ku+) -exp (-Ku”)] (8~) 

1” = (K/E)[exp(Ku+)-exp(-Ku’)]. (8d) 

It is from these formulations that a further delineation 
shall be made as to which is to be recommended: 
using 0.4 for K and 8.134 for E (these values yield 
C = 5.24, van Driest’s intercept), four curves of u+ vs 

I’ * + in addition to van Driest’s curve are obtained and 
shown in Fig. I. Among the results from the various 
models, noticeable differences occur only in the buffer 
region between those of models represented by equa- 
tions (8b) and (8~). It may be noted in passing that the 
models of equations @a) and (8~) give the following 
closed forms : 

J I+ = u++[exp(Ku’)-[l+(Ku+)“/2 

+(Ku*)“/6]]/E (9) 

y+ = U+ +(2/E)[cosh(Ku+)- I]. (10) 

It appears that for smooth walls, formulations by 
equations (8a) and (8d) are preferable to the other 
two, though all four models reproduce the wall-law 
at large values of 26+. 

2.4. Extension to rough surface 
All of the four forms of equations (8) have one 

feature in common : at large values of u+, their right- 
hand sides become 

E+ or I’ = (K/E)exp(I(u+) (11) 

from which the wall-law is recovered. It is significant 
to note that the wall-law slope is dictated by K inside 
the exponential term of equations (8) and that it is 
unaffected by the proportionate constant (K/E). It is 
the latter that provides an extra degree of freedom 
that can be used to account for the roughness influence 
in raising the mixing length or turbulent viscosity. 

Accordingly, the right-hand sides of equations (8) 
are multiplied by an amplification factor R the mag- 
nitude of which depends on the roughness Reynolds 
number, k’. To illustrate this method of analysis, 
equation (8~) is selected for the process: first, the 
rough-surface turbulent viscosity is, from equation 
(SC), represented by 

E+ = R(K/E)[exp(Ku+)-exp(-Ku+)] (12) 

and the resulting velocity profile is a simple, closed 
expression 

? + = u+ + (2R/E)[cos h(Ku~+) - I]. (13) 

At large values of u+, equation (13) is reduced to 

u+ = [logy+ +log, E-log RI/k: 04) 

which has a slope of l/K, the same as for smooth 
surfaces, and a last term denoting the downward shift 
of M+ in the wall region. The shift and the ampli- 
fication factor R are therefore related by 

Au+ = (I/K) log, R. (1.9 

The preceding result, though derived from using the 
model of equation (8~) is common to the other models 
as well. It is this inherent feature in all four models of 
equations (8) that distinguishes the present analysis 
from the other models discussed previously. 

2.5. Prqferred model ,~ornlula~~ans 
The next step is to establish from the four models 

of equations (8) a clearer choice by examining how 
well the numerical results based on these models com- 
pared with the available experimental data over a 
rough surface, For this purpose, however, the only 
data were found in Robertson et al.‘s work [lo]. They 
measured the velocity downshift Au+ from y+ = IO 
to the fully developed region for different surface 
roughnesses. The measured values of Au+ were in 
reference to the smooth surface wall-law of equation 
(1) with A, = C = 5.6. Using the downshift measured 
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(i) -- &+ = (K/E) {eKU+-[l+(Ku+)+o<u+)2/2] 

(ii) - k+ = (K/E) {eKu’-(1+(Ku’)+(Ku+)2/2] 

FIG. 1. Comparative velocity profiles from models (K = 0.4, E = 8.134. f = 5.24) 

in the wall-law region to calculate an amplification 
factor R from equation (15), analytical velocity dis- 
tributions were obtained by direct numerical inte- 
gration, starting from the wall position. with the tur- 
bulent viscosity or mixing length models of equation 
(8). Therefore, for each model, a set of calculated 
velocity curves could be obtained to compare with 
Robertson et d’s data in the range of j’+ from 10 to 
200. Of the four sets, those using equations (8~) and 
(8d) are indistinguishable from each other and are in 
far better agreement with the data than the other two 
models. This favorable correlation is testified by Fig. 
2 and led to the adoption of equation (8d) for an 
exponential mixing length as the candidate model of 
this analysis. There is no particular reason for fav- 
oring equation (8d), except that mixing length is more 
in use than turbulent viscosity as the modeled par- 
amcter. 

3. THE ROUGHNESS AMPLIFICATION 

FACTOR 

What is required next is a quantitative relation con- 
necting the amplification factor R and the roughness 
number k+. For a particular roughness pattern, it can 
only come from empirical data. An extensive survey 
of the literature indicated that there are only a few 
types for which the measured data can be used to 
extract the ampli~cation factors. There are four data 
sources : Nikuradse’s sandgrain, Moody’s random 
roughnesses [2]. Colebrook-White’s mixed-sand sur- 
face [I I], and Hama’s wirescreen data [12]. These 
four sources cover two distinct classes: (i) uniform 
roughnesses-Nikuradse and Hama, (ii) random 
rou~hnesses-Colebrook-White and Moody. Of the 
flour. Nikuradse’s data at-e more comprehensive than 
the others. 

3. I, Nikurudse’s treatment of’ his roughness data 

3. I. 1. The BTfunction. Starting with a smooth pipe, 
he first integrated equation (1) to obtain a relation 

between the average and the friction velocities, and, 
with minor adjustments, arrived at a pipe friction 
formula which agreed well with the experimental data. 
For flows in rough pipes, Nikuradse followed a similar 
procedure and obtained a pipe friction correlation but 
with an undetermined intercept constant C. Its value 
was fixed by comparing with his measured friction 
coefficient for a known surface roughness. This pro- 
cedure led to a relationship between the velocity 
downshift Au’-through the intercept constant C- 
and the surface roughness. Reynolds number- 
through the pipe roughness and friction. Nikuradse 
chose to organize his data by means of his B-function 
which is defined through the expression 

U+ = (log,~r+ -log, k+)/K+-B. (16) 

An explicit connection between the ~-function and 
the intercept constant C in equation (I) can be readily 
obtained. Thus if C is set to 5.5 for a smooth surface, 
then B must assume the following limiting form as k+ 

approaches zero : 

B = 5.5+5.75 1og,,li+. (17) 

At the extreme of large values of k’, experimental 
data established that B approaches a constant of 8.48. 
Hence Nikuradse’s definition led to the interpretation 
that the downward velocity shift in the wall-law region 
is the B-function value of equation (I 7) for a smooth 
surface minus the B-value in equation (16) that 
describes the wall-law over a rough surface. Hence, 
for large k+ 

u’ = (5.5+ 5.75 log,, k+) -8.48 

= 2.5 log,k+ -2.98. (18) 

When the roughness number is large, say k+ > 100, 
for sandgrain roughness, B can be safely put to 8.48, 
then equation (18) coupled with equation (I 5) yields 
an asymptotic, linear relation between the mixing 
length amplification R and k+. 

3, I .2. ~ikurads~‘.~ BTfunctinn re-cma&zed. While his 
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FIG. 2. Comparison of Robertson et al.‘s data with calculated profiles. 

experimental pipe friction data and his method of 
presentation remain undisputed, it is generally 
believed that there is room for improvement in his 
assumption of the wall-law for the pipe cross-section. 
Hence, starting from a more logical step we use the 
following equation to generate the established velocity 
profile : 

[I +(I+)‘(du+/dy+)](dU+/dy+) 

= [I-(y+lG)l (19) 
where ri is the dimensionless pipe radius in the plus 
coordinates, andy+ is the distance from the pipe wall. 
In the equation, the mixing length is obtained from 
equation (8d). 

The first step was to verify that the use of these two 
equations, equations (8d) and (19), would lead to the 
smooth pipe friction correlation. This was done by 
taking 0.4 for K, 9.025 for E, and by setting R to 1. 
The agreement was rather poor. Even with the widely 
accepted Prandtl-van Driest formula for the mixing 
length, the calculated friction factor vs Reynolds num- 
ber relation shows an appreciable deviation from the 
established correlation. However, by introducing a 
van Driest damping factor of equation (3) into equa- 
tion (8d), the result was a remarkable improvement. 
With this modification. rough pipe flows were 
analyzed essentially by cut and trial by varying R until 

the calculated friction values were in acceptable agree- 
ment with the data over a reasonable Reynolds num- 
ber range. In fact, the process of determining the 
mixing length amplification R was also carried out 
for Moody’s random roughnesses, characteristic of 
commercial pipes. With the amplification R thus 
determined, an asymptotic velocity downshift Au* 
can be calculated from equation (15). And from AU+, 
a corresponding B-function was obtained. Results of 
the preceding steps are shown in the figures as follows : 
in Figs. 3(a) and (b) are the familiar pipe friction 
diagrams for Nikuradse’s sandgrain roughnesses and 
for Moody’s commercial pipes with random rough- 
nesses. In both figures, the calculated values in the 
present work are the symbols. For each roughness- 
to-radius ratio, good agreement with the established 
correlations (curves) can be seen. The mixing length 
amplification factors for these two types of rough- 
nesses along with those for Colebrook-White’s mixed 
sand and Hama’s wirescreens are given in Fig. 4. Of 
interest to observe is that the curves of R vs k+ for 

Nikuradse’s sandgrain and Hama’s wirescreens show 
a low plateau value at k+ < 4 and that they both have 
a transition region between 4 and 40 and become 
linear in k+ afterwards, as discussed before. In con- 
trast to these two patterns of uniform roughnesses, the 
curves for random roughnesses exhibit a continuous 
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FIG. 3(a). Calculated pipe friction factors for Nikuradse’s sandgrain roughnesses 
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FIG. 3(b). Calculated pipe friction factor for Moody’s commercial random roughnesses. 
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variation without the zonal features for the other type. 
Finally, the re-evaluated ~-function and Nikuradse’s 
values are compared in Fig. 5. It is worth noting that 
although the difference between them is not large, the 
calculated friction results from the two sources turned 
out to be quite significant. Corresponding to Moody’s 
random roughness friction data, the B-function is also 
presented in Fig. 5. 

The computed amplification factors for various 
values of k’ are tabulated in Table 1 for Nikuradse’s 
sandgrain and Moody’s random roughnesses. At large 
values of k+, linear relations of the following types 
can be used with confidence : 

Nikuradse : R = 0,3036k+, k+ > 100 

Hama : R = O.%W’, k’ > 30 

Moody : R = 0.2950k+, k’ > 600 

Colebrook-White : R = 0.327ki, k’ > 40. 

4. THE VELOCITY FROM THE WALL TO THE 

LAW OF THE WALL 

With the R-k+ relations established at least for the 
commonly encountered roughnesses, it becomes of 
interest to show that the present methodology can 
indeed produce the velocity profiles from the wall to 
where the wall-law is valid. (It should be noted that 
the question of where J+ is referenced is not taken up 
in the present work. A commonly accepted reference 
point is about 70% of the height below the protrusion 
tips.) Values for y+ were chosen between 0 and 400, 
and the two turbulence models given by equations (8~) 
and (Sd) were used. As an illustration, Colebrook 
White’s data were used in the R-k+ relation. The 
numerical constants Kand E were set at 0.4 and 9.025, 
with the latter corresponding to an intercept value of 
5.5, first used by Nikuradse. Computed curves in Fig. 
6 show features consistent with experimental data : at 
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FIG. 4. Mixing length amplification vs surface roughness. 
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FIG. 5. Distributions of velocity-shift function B vs roughness Reynolds number. 

y+ > 100, all curves for different roughnesses have the 
same slope of l/K; and at y+ = 0, du+/dy’ = 1 is 
satisfied by al\ curves. In addition, the laminar 
sublayer thickness is seen to decrease as k’. increases, 
i.e. the surface becomes rougher. 

5. FLOW OVER A ROUGH FLAT PLATE 

It is well known that the basic Prandtl-van Driest 
model for the mixing length works well for flows with 
mild pressure gradients. Since its emergence, there 
have been quite a number of modifications to extend 
its applications to include compressibility, surface 
transpiration, adverse pressure gradient and other fac- 
tors. With the exponential model developed in this 
analysis for rough surfaces, the first expectation is of 
course that it should work well for simple Rows with 
surface roughness. Hence as a first demonstration, 

calculations were carried out for a flat plate with 
Nikuradse’s sandgrain roughness, for which the 
amplification factors are taken from Table 1. Starting 
with turbulent flow at the leading edge and with the 
roughness defined by (kU/v) of 0, 500, and 1000, 
boundary layer developments were tracked until the 
local Reynolds numbers were well into the ‘esta- 
blished’ range. The numerical constants were 
K = 0.41 and E = 7.768 (C = 5). The eddy viscosity 
from equation (8d) was not to exceed Clauser’s limit 
of 0.0168 times the displacement Reynolds number. 
Using a simple marching code, results of the local 
friction are shown in Fig. 7. As a first check, the 
computed friction was found to correlate well with 
the accepted equation for flows over a smooth surface. 
For the other two surface conditions, it should be 
observed that the increase in friction in the leading 
edge region with low local Reynolds numbers was 
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Table I. Mixing length amplification for 
sandgrain (Nikuradse) and commercial ran- 

dom (Moody) roughnesses 

.k’ 

0.0 
2.0 
4.0 
X.0 

10.0 
12.0 
16.0 
20.0 
25.0 
30.0 
40.0 
50.0 
60.0 
80.0 

100.0 
120.0 
160.0 
200.0 
400.0 
600.0 

Moody’s 
Nikuradse’s commercial 
sandgrain random 

_ __-. .~ 

1 I 
I .02X8 I.5173 
I.1278 2.2534 
I .6059 3.h637 
2.0603 4.3767 
2.4778 5.0748 
3.5597 4.4233 
4.7771 1.1445 
6.4263 9.3921 
8.1745 1 I .0470 

I 1.7392 14.3558 
IS.0897 17.6186 
18.2128 20.8224 
24.2704 27.1310 
30.3400+ 33.3253 

3Y .4392 
51.5278 
63.4309 

121.4452 
177.0+ 
_ .._. _- 

+I? becomes linear afterwards : 
R = 0.3036k+ (Nikuradse) ; R = 0.29%+ 
(Moody). 

much more pronounced than that in the downstream 
region with high Reynolds numbers. This is due, of 

course, to the fact that the roughness effect exerts itself 
through a roughness Reynolds number, k-+, in which 

the local friction velocity plays an equally influential 
role, as does the physical size of a protrusion. Thus. in 
the downstream region. roughness influence becomes 
diluted as surface friction is reduced. 

To show some finer detaifs, calculated velocity pro- 

HAN 

files at a streamwise location of Re, = IO’ are given 
in Fig. 8 for the three surfaces. Overall, the velocities 
in the rough-wall boundary layers are, as expected, 
lower than in a smooth-surface layer. In the immediate 
vicinity of a surface, however. the reverse happens, 
as it should. These relative velocity distributions are 
clearly discernible in Fig. 8. 

6. CONCLUDING REMARKS 

A distinguishing feature of the present model for 
the mixing length is its strong dependence on the 
local velocity in the boundary layer, in contrast to the 

original formulation in terms of a local distance from 
the wall. A second feature following the first is the 

model’s ability to incorporate. through a free 
constant, the surface roughness effect by virtue of an 
ampli~cation factor. Numerically, the model behaves 

well and mimics quite faithfully the experimental fea- 
tures of the flow over rough surfaces. On the other 

hand, it is difficult to conclude whether the expon- 
ential form is more, or less conceptually acceptable 
than Prandtl’s model since both are based on the 
empiricism of the wall law. From a calculatio~dl view- 

point, the exponential model eliminates the need for 
separate descriptions of the mixing length according 
to the range of the roughness Reynolds number. 

The present model requires, as does any other 
model, that for each surface roughness pattern the 
relation between R and k’ be known. Within the 

scope of this work, exhaustive compilation of the 
empirical R-k+ relations is neither intended nor pos- 
sible, for the simple fact that although there were a 
large number of rough surfaces tested, available infor- 
mation was not sufficient to be processed into a form 
suitable for the present model effort. Further research 
should include effort to explore how the model can be 

cxtended to include the effects of pressure gradient 

E+ = R(K,E)[~K~+-~-K~+J; y+ = u+(2FUE)[cosh(Ku+)-1] 

5 

FIG. 6. Wall-region velocities for rough surfaces (Colebrook-White). 
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6 
m 0 
X 

c4 

t 

RexCf = 0.324[1 - 8.125 fi + 22.08 Ct ] exp (0.58Ifif) 

REF P’l 

/ CALCUIATED POINTS 

A kUiv=lOOO 

0 kU/v = 500 

0 kU/v = 0 (SMOOTH) 

FIG. 7. Calculated local friction coefficients of flat plates, Nikuradse’s sandgrain roughness, K = 0.4, 
E = 7.168. 

1 .o 

0.8 - 

FIG. 8. Calculated rough-surface boundary layer velocity profiles at Re,r = lo’, K = 0.41, E = 7.768 

and surface transpiration. Of course, extension to heat 
transfer with a thermal mixing length appears to be a 
natural sequel. The latter has been pursued and will 
be reported later. 
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UN MODELE DE LONGUELJR DE MELANGE POUR LES COUCHES LIMITES 
TURBULENTES SUR DES SURFACES RUGUEUSES 

R&urn&On dlveloppe une methodoIogie pour analyser les couches limites turbulentes sur des surfaces 
rugueuses. Une nouvelle formulation du modble de longueur de melange exprimee en variable de vitesse 
est choisie et I’effet de la rugosite de surface est represent& par un facteur ~ampIitude qui multiplie la 
longueur de melange. II est egal a t’unite pour une surface lisse et il est plus grand pour des surfaces 
rugueuses scion le type et I’amplitude des rugosites. La nouvelle methode est essay&e dans le cas dun 
ecouletnent sur une plaque plane avec deux rugosites de surface. Avec un nombre de Reynolds de IO 
millions, le frottement local parietal est augment& de 60% quand le rapport hauteur sur longueur de la 

rugosite est I : 10000. 

EIN MlSCHUNGSWEGMODELL FUR TURBULENTE GRENZSCHICHTEN AN 
RAUHEN OBERFLACHEN 

Zusammenfassung-Ein Verfahren zur Untersuchung turbulenter Grenzschichten an rauhcn Oberfliichcn 
wird entwickelt. Eine Neuformulierung des Mischungswegmodells-ausgedriickt in der Geschwindigkeits- 
variablen-ist grundlegend fur die Ersteliung des Modells. Der EinfluB der Oberfl~chenr~uhigkeit ist 
in einem Verst~rkungsfaktor als ~ultiplikator des Mischungswegs enthalten. Er steigt vom Wert I fur 
eine glatte Oberflkhe zu griifleren Werten bei rauhen Oberfllchen an, abhiingig von -Art und GrdlJe der 
Rauhigkeit. Die neue Methode wird fiir den Fall einer Striimung iiber eine ebene Platte mit zwei 
unterschiedlichen Oberflachenrauhigkeiten dargestellt. Bei der langenbezogenen Reynolds-Zahl IO’ wird 
dcr ortlichc Reibungsbeiwert fur das Verhaltnis Rauhigkeitshiihe zu -hinge I : 10000 urn mehr als 

hO”/o crhiiht. 

MOAEJIb AJIHHbI CMEiIIEHkiII j&JIB TYPEYJIEHTHbIX I-IOI-PAHWgHbIX CJIOEB HAA 
IIIEPOXOBATMMH IIOREPXHOCTIIMM 

AmIOTaIWSl-Pa3pa6aTbIBaeTCs MeTO~o~xor~n aHaJnf3a Typ6yneHTHbIX I’IOrpaHHvHbIx CnoeB H~.LI urepo- 
XOBaT~M~~OBepXHOXTKM~.~~HMOXeflH~OBaHHHHC~O~b3OB~H~HOB~~~O~My~~~OBK~ MOJ&enW&iWHbl 

cMes.ueHw, conepxautas CKO~Tb,a~~~e~xoBaT~H noaepxHocTH BicnwieH B MHo~~enb~p~ 

J4JlHHe cMe~eH~~.o~ yBeJuisnBaeTcr OT etwnfw (NE4 r,?anKHx noBepxH~e~)H JBBHCHT 01 BHna R 

BenHYHHbE UIepOxOBaTOCTZS. npilMeHeHHe HOBOrO MeTOEl EUIHZOTpSpyeTCX Ha IIpHMepe o6TeKawin 

lLWCK0~ IIJElCTHHbIC JlByMJl pa3J-ISWibIMH lIlepOXOBaTOCT5IM~ IIOBepXHOCTiLKorna WCJIO PetiHOJlb~Ca, 

ocHonaHHoe Ha ~wee,cocraanneT 10 MH~~HOHOB,~~K~~H~I~ Ko3$@WieHT T~~HHK ysentivwsaeTcn tia 
60% npt, OTHOWeHHH BblCOTbI W’2pOXOBaTOCTB K JJJlHHe, PUlHOM 1: lo@,@ 


